The College is published by the Indiana University Alumni Association in cooperation with the College of Arts and Sciences Alumni Association to encourage alumni interest in and support for Indiana University.
Contents

Features

A Champion Against Cancer
by Ryan Piurek
5

Confronting a Stigma
by Jennifer Piurek
6

A Passion for Policy
by Ryan Piurek
7

Global Repositioning
by Elizabeth Roudsari
8

Science for a New Century
by Steve Hansonfield
10

A Matter of Chemistry
by Anne Kibbler
16

Departments

From the Dean
2

Dean’s Advisory Board
3

From Your Alumni Board
4

Then and Now
15

Around the College
18

Other Developments
20

Spotlight
Inside back cover

College of Arts & Sciences Undergraduate and Graduate Academic Departments, Programs & Areas of Study

- African American and African Diaspora Studies
- African Studies
- American Studies
- Ancient Studies
- Anthropology
- Apparel Merchandising and Interior Design
- Archives of Traditional Music
- Astronomy
- Biochemistry
- Biology
- Biotechnology
- Center for the Integrative Study of Animal Behavior
- Central Eurasian Studies
- Chemistry
- Chicano-Riqueño Studies
- Classical Studies
- Cognitive Science
- Collins Living Learning Center
- Communication and Culture
- Comparative Literature
- Computer Science (BA)
- Criminal Justice
- Cultural Studies
- East Asian Languages and Cultures
- Economics

College of Arts & Sciences Alumni Association Board

- President: John E. Burks Jr., PhD’79
- Vice President: Frank Violi, BA’80
- Secretary/Treasurer: Anne Kibbler, BA’87
- Executive Council Representative: James M. Rogers, BS’56

Board Members

- Terry Aken
 BA’82
- Bruce Hettick
 BA’82
- Thomas D. Hunter
 BA’96
- Nancy S. Labiner
 BA’91

Indiana University Alumni Association

- Senior Vice President/CEO: John Hobson
- Director of Alumni Programs: Nikki Blind
- Editor for Constituent Periodicals: Julie Dales

To contact the College of Arts & Sciences Alumni Board, send e-mail to askm@indiana.edu.
One of the most compelling reasons for accepting this position of the many different formal and informal academic experiences available to students, and to ensure that these offerings continue to expand and keep pace with the accelerating rate at which the world is changing.

“Of my primary goals is to encourage students to take advantage of the many different formal and informal academic experiences available to them, and to ensure that these offerings continue to expand and keep pace with the accelerating rate at which the world is changing.”

Dean Bennett Bertenthal

I am honored and privileged to join the Indiana University community as dean of the College. This is a time of great promise and huge opportunities for the College, and I am humbled to know that I was selected to provide vision and leadership during this period. It is well known that the College is the “jewel in the crown” of Indiana University, and, like any precious resource, it is highly valued. In this case the value comes from its extremely talented and dedicated faculty as well as the best and brightest students in the state.

Over the past several months, I have been reflecting on what it means to be a dean at a premier institution of higher education. Several months ago, I was given the book Being Lucky, by Herman B Wells. As I read Wells’s philosophy on leadership, I felt an immediate affinity with his views. Wells saw himself as a public servant. He believed that, first and foremost, his job was to recruit outstanding faculty and students and provide them with the resources necessary to be successful in their research and scholarship. Because my perspectives of effective university leadership were forged as a faculty member, I resonate to Wells’s perspectives of effective university leadership. Because my perspectives of effective university leadership were forged as a faculty member, I resonate to Wells’s...
Is there a place for right-brainers in the life sciences? Absolutely!

by Bruce Hetrick

As you probably know, our alma mater wants to increase its life-sciences prowess. Toward that end, IU has named its 12-year Life Sciences Initiative the university’s top legislative funding priority for the next state budget session. More important, it’s outlined the return on investment Indiana can expect: thousands more life-sciences jobs to help stem the brain drain, billions more research dollars to advance life-enriching and life-saving treatments, and more technology transfer to help attract or create at least 100 new companies.

Writing in the Indiana Alumni Magazine, Assistant Vice President for Government Relations J. T. Forbes said the university will seek “at $50 million down payment” on this initiative in the next biennium, for a total request of $80 million. “IU will match the state’s investment with no less than $46 million over the next two years,” he said.

...it’s increasingly apparent that critical, emotionally intelligent thinking — the kind honed by the liberal arts — will be increasingly essential in a knowledge-based economy.

The life-science focus makes sense from many perspectives. The industry represents nearly 20 percent of the U.S. economy. It’s only going to grow with the aging of the Baby Boomer generation. The state and the university have a strong base on which to build. And Indiana (the state) desperately needs to lessen its dependence on old-line manufacturing and expand the rolls of knowledge-driven jobs.

Now, if you’re a student, alum, or donor heavily vested in the IU School of Medicine, it’s easy to see “what’s in it for me.” If you’re loyal to the Kelley School of Business and have the IU School of Medicine, it’s easy to see “what’s in it for me.” If you’re on the science side of arts and sciences, it doesn’t take a big leap to imagine how you might fit in. And if you’re on the science side of arts and sciences, it doesn’t take a big leap to imagine how you might fit in.

But is there a role for us English and political science majors? Or our siblings at the IU School of Journalism? Can sociologists play? Can actors? Or poets? Or cellists? Graphic designers? Historians? Linguists? In short, can any of us who favor our right brains over our left — or who, better yet, bring both sides of the brain to the fore? You betcha.

Because all the research that needs to be done will spring from (or benefit from) whole-brain thinking. And all those ideas that need motivation, management, enlightenment, and empathy. And all those knowledge workers will need stimulating cultural options at the end of their thought-filled days. From Richard Florida’s “creative class” theory to Daniel Pink’s “right brainers will rule the world,” it’s increasingly apparent that critical, emotionally intelligent thinking — the kind honed by the liberal arts — will be increasingly essential in a knowledge-based economy.

So as you hear more and more about IU’s life-sciences initiative, don’t think for a minute that it’s a club for test-tube geeks, and venture capitalists. Without us liberal artists to champion, inspire, explain, record, and help manage it, the initiative won’t happen. But if we’re all along for the ride, there will be plenty of meaningful work and human impact for both the arts and the sciences sides of our house.

Bruce Hetrick, BA’82, is chairman and CEO of Hetrick Communications, an Indianapolis-based advertising and public relations consultancy focusing on health and life sciences. A weekly columnist for the Indianapolis Business Journal, Hetrick also serves on the College of Arts and Sciences Alumni Board, the IU School of Medicine Dean’s External Advisory Board, and the IU Cancer Center Development Board.

A Champion Against Cancer

Oncologist Lawrence Einhorn, credited with developing the treatment that saved the life of Tour de France champion Lance Armstrong, is the College alumni board’s 2006 Distinguished Alumni Award winner.

Lawrence Einhorn, BS’65, MD’72, is the College alumni board’s 2006 Distinguished Alumni Award winner.

He is also working to develop more successful strategies for dealing with far advanced disease, as well as for testicular cancer patients who weren’t cured with their initial platinum-based chemotherapy. He recognizes that while there is a 95 percent cure rate for testicular cancer, and an 80 percent cure rate for patients with metastatic testicular cancer, 20 percent of patients in whom the disease has spread still die.

The hope remains that we will make a huge jump forward in these other diseases. When you deal with taking care of cancer patients … you realize that hope is better than despair. We offer patients true hope, not false hope. For the average patient, they have a better quality of life than they did 10 years ago, the IU says, and much longer. He is also working to develop more successful strategies for dealing with far advanced disease, as well as for testicular cancer patients who weren’t cured with their initial platinum-based chemotherapy. He recognizes that while there is a 95 percent cure rate for testicular cancer, and an 80 percent cure rate for patients with metastatic testicular cancer, 20 percent of patients in whom the disease has spread still die.

“The main work is looking at the 20 percent that are not being cured. In the laboratory, we’re trying to identify molecular differences in the genes and in the proteins that make up the genes so we can individualize therapy for people in the 20 percent,” he says.

Einhorn, who was elected to the American Society of Clinical Oncology’s 2006 Distinguished Alumni Award board. He is also working to develop more successful strategies for dealing with far advanced disease, as well as for testicular cancer patients who weren’t cured with their initial platinum-based chemotherapy. He recognizes that while there is a 95 percent cure rate for testicular cancer, and an 80 percent cure rate for patients with metastatic testicular cancer, 20 percent of patients in whom the disease has spread still die.

“The main work is looking at the 20 percent that are not being cured. In the laboratory, we’re trying to identify molecular differences in the genes and in the proteins that make up the genes so we can individualize therapy for people in the 20 percent,” he says.

Einhorn, who was elected to the American Society of Clinical Oncology’s 2006 Distinguished Alumni Award board. He is also working to develop more successful strategies for dealing with far advanced disease, as well as for testicular cancer patients who weren’t cured with their initial platinum-based chemotherapy. He recognizes that while there is a 95 percent cure rate for testicular cancer, and an 80 percent cure rate for patients with metastatic testicular cancer, 20 percent of patients in whom the disease has spread still die.

“The main work is looking at the 20 percent that are not being cured. In the laboratory, we’re trying to identify molecular differences in the genes and in the proteins that make up the genes so we can individualize therapy for people in the 20 percent,” he says.

Einhorn, who was elected to the American Society of Clinical Oncology’s 2006 Distinguished Alumni Award board. He is also working to develop more successful strategies for dealing with far advanced disease, as well as for testicular cancer patients who weren’t cured with their initial platinum-based chemotherapy. He recognizes that while there is a 95 percent cure rate for testicular cancer, and an 80 percent cure rate for patients with metastatic testicular cancer, 20 percent of patients in whom the disease has spread still die.

“The main work is looking at the 20 percent that are not being cured. In the laboratory, we’re trying to identify molecular differences in the genes and in the proteins that make up the genes so we can individualize therapy for people in the 20 percent,” he says.

Einhorn, who was elected to the American Society of Clinical Oncology’s 2006 Distinguished Alumni Award board. He is also working to develop more successful strategies for dealing with far advanced disease, as well as for testicular cancer patients who weren’t cured with their initial platinum-based chemotherapy. He recognizes that while there is a 95 percent cure rate for testicular cancer, and an 80 percent cure rate for patients with metastatic testicular cancer, 20 percent of patients in whom the disease has spread still die.

“The main work is looking at the 20 percent that are not being cured. In the laboratory, we’re trying to identify molecular differences in the genes and in the proteins that make up the genes so we can individualize therapy for people in the 20 percent,” he says.

Einhorn, who was elected to the American Society of Clinical Oncology’s 2006 Distinguished Alumni Award board. He is also working to develop more successful strategies for dealing with far advanced disease, as well as for testicular cancer patients who weren’t cured with their initial platinum-based chemotherapy. He recognizes that while there is a 95 percent cure rate for testicular cancer, and an 80 percent cure rate for patients with metastatic testicular cancer, 20 percent of patients in whom the disease has spread still die.

“The main work is looking at the 20 percent that are not being cured. In the laboratory, we’re trying to identify molecular differences in the genes and in the proteins that make up the genes so we can individualize therapy for people in the 20 percent,” he says.

Einhorn, who was elected to the American Society of Clinical Oncology’s 2006 Distinguished Alumni Award board. He is also working to develop more successful strategies for dealing with far advanced disease, as well as for testicular cancer patients who weren’t cured with their initial platinum-based chemotherapy. He recognizes that while there is a 95 percent cure rate for testicular cancer, and an 80 percent cure rate for patients with metastatic testicular cancer, 20 percent of patients in whom the disease has spread still die.

“The main work is looking at the 20 percent that are not being cured. In the laboratory, we’re trying to identify molecular differences in the genes and in the proteins that make up the genes so we can individualize therapy for people in the 20 percent,” he says.

Einhorn, who was elected to the American Society of Clinical Oncology’s 2006 Distinguished Alumni Award board. He is also working to develop more successful strategies for dealing with far advanced disease, as well as for testicular cancer patients who weren’t cured with their initial platinum-based chemotherapy. He recognizes that while there is a 95 percent cure rate for testicular cancer, and an 80 percent cure rate for patients with metastatic testicular cancer, 20 percent of patients in whom the disease has spread still die.

“The main work is looking at the 20 percent that are not being cured. In the laboratory, we’re trying to identify molecular differences in the genes and in the proteins that make up the genes so we can individualize therapy for people in the 20 percent,” he says.

Einhorn, who was elected to the American Society of Clinical Oncology’s 2006 Distinguished Alumni Award board. He is also working to develop more successful strategies for dealing with far advanced disease, as well as for testicular cancer patients who weren’t cured with their initial platinum-based chemotherapy. He recognizes that while there is a 95 percent cure rate for testicular cancer, and an 80 percent cure rate for patients with metastatic testicular cancer, 20 percent of patients in whom the disease has spread still die.

“The main work is looking at the 20 percent that are not being cured. In the laboratory, we’re trying to identify molecular differences in the genes and in the proteins that make up the genes so we can individualize therapy for people in the 20 percent,” he says.

Einhorn, who was elected to the American Society of Clinical Oncology’s 2006 Distinguished Alumni Award board. He is also working to develop more successful strategies for dealing with far advanced disease, as well as for testicular cancer patients who weren’t cured with their initial platinum-based chemotherapy. He recognizes that while there is a 95 percent cure rate for testicular cancer, and an 80 percent cure rate for patients with metastatic testicular cancer, 20 percent of patients in whom the disease has spread still die.

“The main work is looking at the 20 percent that are not being cured. In the laboratory, we’re trying to identify molecular differences in the genes and in the proteins that make up the genes so we can individualize therapy for people in the 20 percent,” he says.

Einhorn, who was elected to the American Society of Clinical Oncology’s 2006 Distinguished Alumni Award board. He is also working to develop more successful strategies for dealing with far advanced disease, as well as for testicular cancer patients who weren’t cured with their initial platinum-based chemotherapy. He recognizes that while there is a 95 percent cure rate for testicular cancer, and an 80 percent cure rate for patients with metastatic testicular cancer, 20 percent of patients in whom the disease has spread still die.

“The main work is looking at the 20 percent that are not being cured. In the laboratory, we’re trying to identify molecular differences in the genes and in the proteins that make up the genes so we can individualize therapy for people in the 20 percent,” he says.
In Bernice Pescosolido’s undergraduate classes at Indiana University Bloomington, the Chancellor’s Professor of Sociology helped students draw a ripped-from-the-headlines current event related to mental health.

Her Medicine in America class last year began with an analysis of the media furor between Brooke Shields and Tom Cruise in which Cruise had publicly chastised Shields for taking medication for postpartum depression. “They needed to examine the whole controversy and then come up with an opinion about postpartum depression and its treatment,” Pescosolido says. “I want them not to regurgitate what I say, but to think about it. It’s not followed by my lecture.”

The students’ papers reflected the results of larger studies in the United States: While most Americans believe mental illness exists, many won’t take psychiatric medications. Pescosolido’s primary crusade over the duration of her career has been to bring attention to the stigmas around mental illness and address negative perceptions of the mental health profession. Over her career — 21 years and counting at Indiana University — she has made positive changes at IU and beyond, receiving numerous teaching awards along the way.

Pescosolido created the university-wide mentoring program “Preparing Future Faculty” and founded both the Indiana Consortium for Mental Health Services Research and the IU Strategic Directions Initiative’s CONCEPT I Program in Health and Medicine. From 1989 to 1995, she headed a Research Scientist Development Award and from 1997 through 2003 held an Independent Scientist Award, both from the National Institute of Mental Health. Supported by numerous federal and private grants, Pescosolido has significantly advanced the body of knowledge on how social networks connect people to their communities and the ways mental illnesses are perceived by various societies.

The prevailing stigma against people with mental illnesses translates to discrimination against individuals and the mental health profession itself, says Pescosolido. Those prejudices are sustained by a steady stream of misinformation — because they don’t feel sick. (Many people who commit violent crimes, she says, media coverage of events such as the Columbine shootings has led the majority of people to believe troubled children and teens are more dangerous than depressed adults.

“What appears to drive prejudice and discrimination in the U.S. toward people with mental illness is fear, and the fear is generated to large extent by sensational reporting in the media.”

According to Pescosolido, stigma against people with mental illness plays into whether policymakers devote their attention to the issue, the time of day broadcasters choose to run public service announcements about mental illness, and whether adequate funding is provided for mental health in America. More than just people rejecting people, she says, many physicians end up not going into psychiatry because it’s more stigmatized than, say, cardiology.

At a recent meeting at the National Cancer Institute, Pescosolido took part in a discussion on creating a agenda for noncompliance — for example, when people start feeling better and stop taking their anti-depressants, or don’t take blood pressure medication because they don’t feel sick. “They were trying to get a new framework to deal with issues of noncompliance, and I said something about ‘Well, my understanding is that psychiatrists do it this way: a cardiologist there leaned over to me and said ‘But psychiatry, that’s hardly medicine.’ So Pescosolido says it’s more than the lives of individuals.

The timing of his first trip to Russia was also remarkable. In the summer of 1990 Feltman returned to Moscow, where he had a master’s degree in Russian law and worked at an international law firm representing multinational companies entering the Russian market.

“I was totally engaged by the people, and I couldn’t think of a more interesting place in the world to be at that time than Russia going through the transition to a market-based economy,” he says.

After practicing law in Russia from 1995 to 1998, Feltman’s fast-rising star caught the attention of the state’s political leaders. In 2005, Indiana Gov. Mitch Daniels asked Feltman to serve as executive vice president and general counsel of the newly established Indiana Economic Development Corp., the premier entity charged with driving the state’s economic development. Under his guidance, the agency aggressively attracted new businesses to the state, retained existing jobs, and secured capital investments. During the first seven months of 2006, the agency reported commitments for 19,722 new jobs and $3.9 billion in private capital investment.

Feltman says the agency’s successes in spurring new job growth in Indiana have reinforced his enthusiasm for his chosen career. “For me in my short career, I’ve always wanted to be passionate about what I’m doing. If you’re not learning and throwing everything you can into it, then why are you doing it? It really does make you want to get up and go to work in the morning when you know that your efforts can result in thousands of people going to work and getting jobs.”

He’s also looked to others for his successes, including his alma mater. “Without the background and experience I received at IU, none of this would have been possible.”
Approaching the intersection
You are late for an important meeting and are driving well above the speed limit, hoping to make up for lost time. As you head toward a traffic light, the light turns yellow, but you quickly overcome the urge to race through the intersection. You slow down and stop at the light. You are late for an important meeting and are driving well above the speed limit, hoping to make up for lost time. As you head toward the intersection, the light turns yellow, but you quickly overcome the urge to race through the intersection. You slow down and stop at the light.

Joshua Brown, a new assistant professor in the College of Arts and Sciences this year whose work takes place at the crossroads of several disciplines. Like other faculty in his department, he simultaneously examines behavior and biology, psychology, and neuroscience as a single system. He also develops complex mathematical models of the brain. He monitors and controls behavior and tells us if we are about to make a mistake. It picks up sometimes subtle cues from the environment and uses this information to make predictions.

Brown is one of many new faculty in the College of Arts and Sciences this year whose work takes place at the crossroads of several disciplines. Like other faculty in his department, he simultaneously examines behavior and biology, psychology, and neuroscience as a single system. He also develops complex mathematical models of the brain. He monitors and controls behavior and tells us if we are about to make a mistake. It picks up sometimes subtle cues from the environment and uses this information to make predictions.

Joshua Brown

A new wave of faculty hiring places the College at the cutting edge of research, education, and scholarship.

by Elizabeth Rodstrich

One of the new faculty in the College of Arts and Sciences this year whose work takes place at the crossroads of several disciplines. Like other faculty in his department, he simultaneously examines behavior and biology, psychology, and neuroscience as a single system. He also develops complex mathematical models of the brain. He monitors and controls behavior and tells us if we are about to make a mistake. It picks up sometimes subtle cues from the environment and uses this information to make predictions.

Aren’t we about to make a mistake? It picks up sometimes subtle cues from the environment and uses this information to make predictions.

Joshua Brown

A new wave of faculty hiring places the College at the cutting edge of research, education, and scholarship.

by Elizabeth Rodstrich

You are late for an important meeting and are driving well above the speed limit, hoping to make up for lost time. As you head toward a traffic light, the light turns yellow, but you quickly overcome the urge to race through the intersection. You slow down and stop at the light. You are late for an important meeting and are driving well above the speed limit, hoping to make up for lost time. As you head toward the intersection, the light turns yellow, but you quickly overcome the urge to race through the intersection. You slow down and stop at the light.
Biology refers to the 1940s and ’50s as the golden era of life sciences at Indiana University. It was a time when celebrated geneticists Herman Muller and Tracy Sonneborn were on the faculty, and James Watson—who would go on to solve the structure of DNA—came to Bloomington for graduate study with Professor Salvator Luria.

Now the university is doing all it can to usher in a second golden era, one that includes not only groundbreaking research but collaborations between faculty at Bloomington, the IU Medical School, and Purdue University, and the creation of new, high-tech companies that employ thousands of people.

“We can’t afford not to do this,” says Ted Widlanski, a chemistry professor and executive director of the university’s MetaCyte Initiative. “We’re talking about an economy that will sustain this state over the next century, just like manufacturing and agriculture sustained the state over the last century.”

To kick the effort into high gear, the university is asking the state for

The campus has 14 faculty members in biology, chemistry, and molecular biology. The latter is a strength of Bloomington’s Biology department, says life-science faculty on the Bloomington campus. They outshine Michigan, and they are life sciences and music,” Palmer says. While the medical school is a lead player, the Bloomington campus—the College of Arts and Sciences—will perform a key role in the area of basic research.

Why life sciences? “It makes sense because that’s where the action is,” says Elizabeth Ruff, chair of the biology department at IU Bloomington.

Since Watson and Francis Crick decoded the double-helix structure of DNA in 1953, the pace of discovery about how life works has accelerated. In the past 25 years, scientists have learned that the same genes guide much development in a wide range of organisms, from fruit flies to people. The human genome was sequenced in 2001, and research has moved on to study how biological information is transmitted at the molecular level. The line between biology and chemistry is disappearing. “We’re in a new century of science,” Ruff says.

Meanwhile, state business and government leaders looked at life sciences and saw opportunity. Central Indiana was home to a giant pharmaceutical company, Eli Lilly & Co., as well as significant life-science companies such as Guidant Corp., Cook Inc., and Baxter BioPharma Solutions. Investing in academic and medical research, they reasoned, could help strengthen those businesses and create new ones.

“It’s a perfect marriage of Indiana University’s opportunities and goals with those of the state,” says Jeffrey Palmer, a Distinguished Professor of biology at IU Bloomington and a leader in developing and implementing the vision for interdisciplinary life science research at the university.

McRobbie produced a strategic plan to set goals and strategies for making Indiana University a life science leader. The plan called for spending $1 billion in university funds over a decade to build up its already strong programs in several areas of research, including analytical and organic chemistry, model biological systems, and neurosciences, the latter a strength of the psychology department, which recently renamed itself the Department of Psychological and Brain Sciences.

Bennett Bertenthal, who started Jan. 1 as dean of the College, took note of the plan when he was appointed in the fall. “This is the type of big initiative that garners a great deal of national attention,” says Bertenthal, a cognitive neuroscientist.

The plan also says the university must provide research and education that helps Hoosiers “lead healthier, better, and longer lives,” expanding the life-sciences tent to include clinical services in the schools of optometry and dentistry and the fitness and health programs in Bloomington’s School of Health, Physical Education, and Recreation.

“I think it really opens up opportunities for people to think outside of the box and say, ‘Who can we work with to make this happen for us,’” says Sarita Soni, the IU Bloomington vice provost for research and a professor in the School of Optometry at Bloomington.

Why IU?

In many core areas of scientific research—including analytical chemistry, evolutionary biology, model systems biology, and others—departments within the College are among the top-ranked in the nation. Palmer, a former chair of the biology department, says life-sciences faculty on the Bloomington campus are as highly regarded as those at any U.S. university. The campus has 14 faculty members in biology, chemistry, and psychology, the life-sciences triad, who are members of the prestigious National Academy of Science or the American Academy of Arts and Sciences. The University of Michigan, considered to be one of the most elite public universities in the nation, has six, he says.

“There are two areas where we outshine Michigan, and they are life sciences and music,” Palmer says.

Genesis of life sciences

Nearly a decade ago, then IU President Myles Brand was talking about the growing importance of life sciences in speeches around the state. The first big outside investment came in December 2000, when the Lilly Endowment announced it was giving the university $105 million over three years to create the Indiana Genomics Initiative, InGen for short.

The endowment later added $50 million to the gift, the largest ever received by the university. The funding was targeted to the medical school, which, as a result, was able to recruit 68 new faculty, upgrade its supercomputing and data storage capabilities, and generate hundreds of millions of dollars in research funding.

Bloomington’s turn came in 2004, when the Lilly Endowment awarded $54 million for the Metabolomics and Cytomics Initiative, nicknamed METACYC, for biochemical research. The center is supporting successful and promising research, promoting collaboration, and seeking to establish “centers of excellence” that can attract research dollars from such agencies as the National Science Foundation and National Institutes of Health.

Kumble Subbaswamy, then the dean of the College, said at the time that the Bloomington campus had been “running on kerosene” in its life-sciences funding. “Well, today we received a large supply of rocket fuel,” he said.

With that boost, Subbaswamy medical school Dean Craig Brater and then-university Vice President for Research Michael
"The major stumbling block here is, we’ve gotten pretty close to as good as we can get, given the size of the physical plant," Widlanski said. "For the most part, the really outstanding places are both very good on a per-capita basis and very large." Why does size matter? Because the bigger a science department is, experts say, the more likely its faculty will find colleagues with similar research interests and strengths. That means they are more likely to collaborate and more likely to form the multi-specialty teams that can be successful in attracting lucrative federal and foundation research grants.

"Growing in size presents the opportunity to grow into new and important areas and to develop critical mass in existing areas," Palmer says. "What we find, over and over, is that we have a small group of excellent scientists in certain areas, but we are subsensi-tus to attract and keep the best." And bigger departments, he says, can attract the best graduate students and postdoctoral fellows, who are essential to running a well-funded research operation.

"That’s almost a make-or-break issue," Palmer says. But getting bigger and better is expensive. It requires not only spending the money to recruit and hire both established and promising science faculty, but building the buildings and adding the laboratory space where they can do their work.

"It’s almost like the sports arena in terms of competing for top talent in the sciences these days, especially the life sciences," Palmer says. "It’s a seller’s market out there."

Sure, top researchers, the ones who already have or are likely to attract big grants to fund their research, can command big salaries. But salaries are the easy part, Palmer said. "Startup packages" — established and equipment for a working laboratory for such scientists can run to $1 million for established researchers and half that for up-and-coming ones. At IU Bloomington, a 2003 report commissioned by McRobbie — now the Bloomington interim provost — found there was an immediate need for 1 million square feet of research and lab space.

Simon Hall, a life-science building now nearing completion at the old center of the campus, will meet some of the need. Scheduled to open this year, the $56 million building will house labs and offices for biologists and biochemists, along with the Gil Center for Biomolecular Science, the Johnson Center for Entrepreneurship and Innovation, and the IU Biocomplexity Institute.

University officials hope to break ground this year on what they’re now calling Life Sciences II, a multidisciplinary science building north of the Geology Building. And they are making plans for Life Sciences III, which some faculty hope to see built near Jordan and Ballantine halls.

"I think we have to build. We absolutely have to build," said Soni, the vice provost for research. "We’re having a tough time even recruiting faculty at the moment because we need space."

Why Indiana?

While the university pursued funding to build up its research infrastructure, the Central Indiana business community and state government were betting on life sciences as an engine to carry the state’s economy. IU and Purdue joined with several large life- and health-science businesses and the city of Indianapolis to create the Central Indiana Life Sciences Initiative — later renamed BioCrossroads — to drive the effort. In addition to promoting Indiana as a good place for life-science businesses, it helped create the $73 million Old Crescent Science Center.

But when it comes to supporting the research that’s essential to growing the industry, there’s concern that Indiana may be late to the dance. Most if not all the states are eager to play in the life-sciences game. And there are regions — primarily urban centers on the East Coast and West with high concentrations of research universities — that are well ahead.

"To be honest, the university and especially this campus were pretty slow in the ‘80s and ‘90s in building up, when most universities were building up very rapidly in the sciences," Palmer says. "Fortunately, we didn’t wait too long or we’d be out of the game."

State funding request

Indiana isn’t waiting for state support to play in the game. For evidence of that, check out a recent issue of the journal Science. It includes four separate quarter-page ads seeking applicants for multiple life-sciences faculty positions at IU Bloomington.

A report last summer by Battelle Memorial Institute, a nonprofit research and development organization in Columbus, Ohio, identified Indiana as one of the nation’s life-sciences leaders.

It said 274,000 Indiana jobs — 10 percent of the state’s total — were tied directly to the life-sciences and health sectors. Those jobs paid wages that were higher than the national average for comparable parpositions, it said, and much higher than the state’s average wage. It said life-sciences companies and their employees accounted for more than 20 percent of the taxes paid in Indiana.

The Battelle report said Indiana was one of only three states to have a significant presence in three of the four sub-sectors to bioscience: agricultural feedstock and chemicals, drugs and pharmaceuticals, and medical devices and equipment.

"We have students who are really hungry to make those connections and really learn about the science of humanity," Schlegel said. "We’re situated in a great time and place," says Whitney Schlegel, director of the program.

The College’s human-biology program brings together faculty from biology, the social sciences, and the humanities. They work with students through a real-world approach that includes case studies, team learning, and projects.

"We have students who are really hungry to make those connections and really learn about the science of humanity," says Whitne Schlegel, director of the program.

The College’s human-biology program brings together faculty from biology, the social sciences, and the humanities. They work with students through a real-world approach that includes case studies, team learning, and projects.

"We have students who are really hungry to make those connections and really learn about the science of humanity," says Whitney Schlegel, director of the program.

The College’s human-biology program brings together faculty from biology, the social sciences, and the humanities. They work with students through a real-world approach that includes case studies, team learning, and projects.

"We have students who are really hungry to make those connections and really learn about the science of humanity," says Whitney Schlegel, director of the program.

The College’s human-biology program brings together faculty from biology, the social sciences, and the humanities. They work with students through a real-world approach that includes case studies, team learning, and projects.

"We have students who are really hungry to make those connections and really learn about the science of humanity," says Whitney Schlegel, director of the program.
One is full, associate, and assistant professors in a new cancer biology program being established jointly by the College and the campus’s graduate program in medical sciences. A search is being conducted for the director of the program for research in the biology of cancer.

“The Medical School has built a world-class cancer center, but what they want to do is increase the presence of basic research. And basic research is very rich in Bloomington,” says Raff, the chair of the growing biology department.

But the big boost could come if the Legislature finds a way to fund the university’s request for $30 million in 2007–08 and $50 million in 2008–09 for life sciences. The university will provide matching funds for the initiative, focused on research at Bloomington and the medical school.

President Adam Herbert told the State Budget Committee in November that the funding will enable IU, in the next two years, to add 600 jobs, expand its eight medical education centers, and promote partnerships with Indiana communities and with faculty members at Purdue and Notre Dame. Over the next 12 years, he said, Indiana University would add 476 life-science faculty positions through the initiative.

Palmer, the Bloomington biology professor, said each new faculty lab is like a small business, employing between four and 20 postdoctoral researchers, graduate students, and technicians. So adding several hundred faculty means directly adding several thousand jobs.

Using multiplier factors that are accepted in the life science industry — and confirmed by what happened at the Medical School with the Indiana Genomics Initiative — officials say the 12-year effort will yield 14,000 jobs, $2.4 billion in additional research grants, and at least 100 new companies.

The initial response seemed positive, says Bryant, who watched IU make the funding pitch as head of the Bloomington Life Science Partnership. “They’re getting a pretty receptive audience, from what I understand,” he says.

While state government’s fiscal position has been improving, legislators will also be making hard decisions about paying for elementary and secondary school funding, full-day kindergarten, health care, corrections, and other needs as they craft a two-year budget to approve by the end of April.

But if the university’s projections of economic benefits from life sciences sound optimistic, some faculty say they could turn out to be conservative. Only with generous research support, they say, will states and universities produce another Eli Lilly that employs 20,000 people in high-paying jobs.

“When my husband and I first met with our financial adviser three years ago to set up a college fund for our daughter, the adviser said the estimated cost for a four-year public institution in 18 years (including room, board, books, etc.) was going to be close to $200,000. We almost fell out of our chairs. But I recognized then, as I do now, that when it comes to rising tuition costs, universities are dealing with a complex set of issues that have no easy solution, including the rising costs of healthcare, energy costs, and infrastructure. Here are some of the other major contributors to tuition increases:

State support Probably the biggest hurdle that public schools like IU are facing is decreasing financial support from the state. At IU, the amount of state support has reached such a low level that some no longer see it as a state-supported university, but as a state-university. In 1950, the Indiana State Legislature provided around 78 percent of IU’s operating budget (no distinction was made between campuses at this time). Thirty years later, in 1980, the state decreased its funding by 14 percent by controlling the growth in education spending, which led to the state funding 52 percent of the university’s budget in 1980.

“Let’s say we can create one more company in this state that’s the size of a Lilly, that employs 20,000 people in high-paying jobs,” Widlanski says. “I think that’s worth it.”

Supporting the research that is driven, more often than not, by their own curiosity about how the world works.

“I’m saying to faculty, ‘Continue to do your work,’ ” says Soni, the Bloomington vice provost for research. “I haven’t seen anybody to shift to doing something else. Because I think research is driven by your own desire to move knowledge forward.”

Spend an hour with Raff, the biology department chair, and you’ll hear stories of faculty who are moving knowledge forward in areas that, just a few years ago, weren’t even known.

Like a scientist enamored with the indescribable variety of the natural world, she is filled with enthusiasm for the varieties of research taking place on the Bloomington campus, especially in the life-science strongholds of Myers and Jordan halls.

“This is a cool place to be. This is a cool place to do science,” she said. Raff wants the world to know about the university’s “ruck team,” biology researchers who, funded by the National Institutes of Health, are studying the ins and outs of tick ecology and what it means for the tick-borne diseases, some of them serious threats to humans. It’s the kind of collaboration that can happen, she said, when researchers with different specialties work in the same department.

And Tom Kaufman, a motorcycle-riding IU scientist whose research takes advantage of the fact that fruit flies and people are, genomically speaking, more alike than different. And also the newly hired faculty who study the micro-organisms that cause chlamydia, trichomoniasis, and — ready for this? — plague.

Not to mention her own research on how proteins form cellular structures, or her collaborations with her husband, biology Professor Rudolf Raff, working with fossilized embryos of Australian sea urchins.

As life sciences expand at IU, Raff says, so do opportunities for undergraduates to help faculty in their labs and to take classes from top researchers. “Our most stellar researchers in biology are also our most stellar teachers,” she says, citing as an example Mimi Zolan, a cell biologist who is a “spectacular teacher” of introductory biology courses.

And while Bloomington and the College are increasing their efforts to collaborate and communicate with the Medical School in Indianapolis, Raff says, their culture — and their role in discovery — isn’t changing.

“The truth is,” she says, “if you don’t do the basic research, you’ll never get the breakthroughs.”

Steve Blinnfield (B’77), an education reporter for the Bloomington Herald Times.
The College: With the creation of bio-technology companies all over the country, it might not be surprising to see academic minds move into that booming industry. Why, at the height of an extremely successful career with Eli Lilly, did you decide to move into academia?

Richard DiMarchi: The short answer is the autonomy and the diversity that you find in a university. Large companies are great, but they have a narrow agenda relative to what occurs in a university. They have some very specific financial objectives, and they have some very specific technical objectives. Furthermore, you get the sense after being there more than two decades that you’re watching the same movie for the second, third, or fourth time. Academics provides a unique opportunity for me to share what has been 30 years of learning in what is rather orthogonal to most faculty member’s training. It’s a reciprocal relationship. I’m learning from a group that has viewed the world differently than the one I have largely been about for the last 20 years. Lastly, as it relates to biotechnology, there was an opportunity to advance technology that was not only being used by a scientist that would not have been possible if I had remained within a company like Eli Lilly. I had a fantastic experience being a part of Lilly, and I have nothing but the highest respect for what the company does, but I needed a middle change and more diversity and more autonomy, and it’s just been super

The College: What drew you specifically to the chemistry department at Indiana University?

Richard DiMarchi: History, both personal and institutional. I had an association with the university in my training. I had maintained communication and contacts while at Lilly, and I had great respect for the quality of this institution and how it’s gone about conducting its affairs at the university level and at the departmental level. Add to that the quality of life one experiences in a place like Bloomington, and it became a relatively easy decision.

The College: Three years ago you were a vice president of biotechnology research labs. Today you are chair of an academic department at a major research university. Apart from scientific expertise, what did you carry with you from your position at Lilly that is serving you well as department chair?

Richard DiMarchi: I would begin by saying the two assignments are more alike than they are different, despite what people may initially perceive. Leadership is more about people and far less about strategy or technology. I’m a great believer that people want to know how much you care before they care how much you know. If they don’t sense that you have a personal integrity and that this is something in which there is room for them to have ownership and to practice their own vision and career interest, then you’re highly unlikely to succeed. The common elements then become building trust, time management, and fighting the zero-sum thinking that’s prevalent in all the institutions I’ve been associated with. Napoleon said the most important element of any organization is morale, so I constantly remind myself of that and try to surround myself with positive thinkers.

The College: What about the pace? Sometimes when people have experienced both industry and the university setting, they feel a little frustrated by the slower tempo.

Richard DiMarchi: Well, there’s a certain bureaucracy that exists in a university, but the science and scientists are every bit the same pace. If you don’t publish, if you don’t raise funds, if you don’t get your degree, then you don’t get tenure, so there’s a level of understanding that that’s important.

The College: The School of Medicine is playing a major part in the development of life sciences in Indiana. Where does the chemistry department fit in the big picture?

Richard DiMarchi: Let me talk a little bit about chemistry and a little bit about technology. There are always a hidden question in the question you have asked, which is, is one more important than the other? And I want to be very clear that neither is more important. They’re both important. The organizations and the institutions that can find a way to value both and integrate both are the ones that are going to outperform those that are over-developed in one versus the other. If you look within a pharmaceutical company, the largest single work force is chemists, so it’s clear that chemistry is a very big part of that. If you step back and think even bigger in terms of technologies, including chemists, the impact of what they do is nothing short of revolutionary. If you think about material science in terms of the instruments we use to do imaging on subjects, it’s phenomenal how technology has changed the world. They’ve changed the way we go about practicing medicine.

We’re in an infancy of life sciences. What we’re doing today is analogous to the work done by the great explorers. And the ramifications for not just health care, not just academic science, but how we live on this earth can’t even be anticipated. It’s an incredibly exciting time to be a chemist, but I’m using chemist in the broadest sense: a technologist. We tend to get too parochial in defending our space, when what we should be doing is thinking broadly and looking for places to collaborate.

The College: There are plenty of hot new biotechnology companies starting up around Indiana and elsewhere. Is basic research in an academic chemist- try department sexy enough to attract significant funding? How healthy is funding these days from the National Institutes of Health and other major grant-awarding bodies?

Richard DiMarchi: Somebody’s going to have to plant if somebody’s going to harvest. From a venture perspective, you’ve got more than enough people who are interested in harvesting, but too few who are interested in planting. Many of the advances we’ve seen over recent decades in the life sciences are a direct result of the fundamental investments that were made in the middle of the last century. There’s never been a successful revolution that someone didn’t fund. So if we’re going to have this biological revolution, and more importantly if we’re going to sustain it, someone has to fund it.

In an absolute sense, we’re investing sizable sums, whether you look on the commercial side or the academic side. In a relative sense, I still think it’s not enough. Furthermore, I think there’s a huge dis- crepancy in terms of the funds available for academics. If you get a NIH grant, you get roughly the amount of money to spend in a year that it costs to fund one scientist in the commercial realm. There’s a huge, untapped intellect within academic circles.

The College: Tell me about some of the chemistry department’s most exciting research projects related to the life sciences.

Richard DiMarchi: The one that’s most visible would be in the analytical area — the proteomics, the glycomics field. These are molecular telescopes, giving us the ability to see what nobody else has seen previously. It’s no different from Galileo going into his observatory and looking into the heavens. The next probably falls under the heading of making things — the ability to synthesize natural products. Chemical biotechnology, an ability to use microorganisms in a way that synthetic chemists have used nonbiological materials, is a huge strength of this department.

The last area is nanotechnology, the ability to work at a much smaller scale than we ever have previously and to build things that have a structural order. It’s crucial that when we focus on the life sciences we don’t lose our core excellence. Maintaining great strength in physical and synthetic chemistry is very important.

The College: You just started your own biotechnology company, Macarida Biotech, with three other former Lilly scientists. The company is developing a therapy for diabetes.

Richard DiMarchi: It’s really focused on how you can take nature’s molecules — proteins and make them better drugs. Nature evolves these molecules for physiology. We as scientists evolve them for pharmacology. A drug I designed almost 20 years ago was the first protein that was optimized by recombinant DNA for better use as a medicine. This is the drug called Humalog, which is currently used by more than 2 million diabetics every year and sells well over a billion dollars a year for Lilly. Here we’re working on glucagon, doing the same thing, optimizing that particular drug. In an analogy to insulin being an accelerator, glucagon is the brake. You need both of these functions, so we have developed a number of optimized molecules and have formed a company to advance and test them.

The College: Where do you see the life sciences in Indiana 10 years from now?

Richard DiMarchi: The more appropriate framing of the question is, “Where do you see Indiana in the life sciences?” The reason I take exception is I fear we draw a geographical boundary that is unnecessary and, in fact, harmful. Science is an international community, and what we need to be doing is developing a unique strength that will recruit people from all over the world to come and be a part of the Indiana university community, and what we need to be doing is becoming a stand-alone, world-class community, and what we need to be doing is attracting the greatest minds in the world.

Think in terms not just of a decade, but of a century. The most important thing we can do is recruit high-quality people. That’s the business of a university, thinking very long term and providing sufficient resources and the space, autonomy and diversity — and out of that, discovery will come.
En français, s’il vous plait

It was the best of times, period. Nineteenth-century France gave the world impressionism, a fascination with travel, “sociology,” and the writings of Hugo, Zola, Balzac, Rimbaud, and Verne. Scholars from around the world came to Indiana University in October to rediscover the era, with the IU Department of French and Italian playing host.

Over three days at the Indiana Memorial Union, the 32nd annual 19th-Century French Studies Colloquium — titled “Discoveries, Over one hundred years later, and Italian playing host. Scholars from around the world came to Indiana University in October to rediscover the era, with the IU Department of French and Italian playing host.

Over three days at the Indiana Memorial Union, the 32nd annual 19th-Century French Studies Colloquium — titled “Discoveries, Inventions, and Rediscoveries” — included sessions on fertility and motherhood, food, literature, and art. Scholars from Australia, Canada, Cyprus, France, New Zealand, and the United Kingdom took part. And there were uniquely Indiana University features: guided tours of the Kiesey Institute and a Jacobs School of Music performance of Massenet’s opera Manon.

Biologists horn in on beetle questions

Why do horned beetles have horns? The question has intrigued scientists for generations. Did the horns evolve for digging? Combat? Male selection? Are they for looks? Now Indiana University scientists have presented a different view.

Writing in the December 2006 issue of American Naturalist, authors Armin Moczek and two students present evidence that the beetles initially evolved horns to break out of thick larval shells. The finding is surprising, because in several beetle species, adult males have horns but adult females don’t. But Moczek said females in the larva stage do have horns; they simply reabsorb the horn tissue before they emerge as adults.

To test the theory, the scientists used electro-surgery to destroy the horns of beetle larvae. Most of the larvae were unable to break open their larval head capsules and died. But a question remains: If the horns first evolved as part of the beetle’s development, why does the difference between adult males and females? That’s fodder for more study.

Moczek is the sole author of the American Naturalist paper. His co-authors for the Evolution paper are graduate student Tami Cruickshank and undergraduate Andrew Shelby.

Deep-mine discovery points to possible life on Mars

Indiana University researchers are part of a team that found a community of self-sustaining bacteria living in rocks 1.7 miles beneath the Earth’s surface. The finding, reported in October in the journal Science, provides support for the growing belief that life existed on Mars.

The bacteria, living in harsh conditions in a deep South African gold mine, appeared to rely on radioactive uranium to convert water molecules to usable energy. The dominant microbe in the mine was a new species that separated from its surface relative between 3 million and 25 million years ago, said the researchers, including IU geochemist Lisa Pratt.

Pratt, who directs the NASA-funded Indiana–Princeton–Tennessee Astrobiology Institute, and there is significant evidence that Mars once had surface water and could have supported life: “If the subsurface of Earth is a long-term refuge for microbes, it is conceivable to think the subsurface of Mars might also be a habitat that microbes could return to when the surface is dry and cold,” she said.

Getting down to the roots of techno music

Most people with a little knowledge of the electronic popular music called techno probably associate it with the dance halls and rave scenes of Europe. In fact, it was developed about 20 years ago by a handful of African-American college students around Detroit.

Portia Maulsby, professor of folklore and ethnomusicology and director of the Archives of African American Music and Culture at Indiana University, organized the first national conference on the genre to highlight those little-known beginnings. Called “Roots of Techno: Black DJs and the Detroit Scene,” it took place in October at IUB.

Artists invited to the conference included Juan Atkins, widely credited as one of three inventors of techno; Terrance Parker, a producer, remixer, and DJ of the subgenre called house music; and the Detroit DJs known as the “Three Chairs” — Marcelia “Ma-Lik” Pittman, Theo Parrish, and Rick “The Godson” White.

Awards and scholarships

Kathryn “Kay” Booth, an IUB alumna and director of global equity research at Bear, Stearns and Co. Inc., was one of seven 2006 Women of Power and Influence honored by the National Organization for Women in New York City.

Booth, BA’72, earned a bachelor’s degree in fine arts and has spent 28 years in investment banking. She has served on the College Dean’s Advisory Board since 1994, is a trustee of the IU Foundation, and was inducted into the President’s Circle in October at IUB.

The Geological Society of America gave its highest service award in 2006 to Abhijit Basu, chair of the Department of Geological Sciences at IUB. “Basu has a long and distinguished record of service to the geosciences, both with the Geological Society of America and internationally,” said Jack Hess, executive director of the society.

Basu has chaired geological sciences since 2003. His research includes studying differences in rock formation on Earth, the moon, and Mars.

Facts become fiction in civil rights tale

R. LeRoy Bannerman, professor emeritus of telecommunications, has published Where Black Rane Black and White, a novel set in the Deep South in the early days of the civil rights movement.

The book, published by Bloomington-based Author House, tells the story of Joey Henderson, the son of a sharecropper, who agrees to integrate an all-white institution in exchange for having his educational costs paid. The story line includes tension between the hero and his family and girlfriend, a legal fight (with Henderson represented by the legendary Thurgood Marshall), and the challenges of attending school in an atmosphere of intense bigotry.

Bannerman, 85, grew on his own experience of teaching in Alabama in the 1930s. An award-winning writer and director of programs for radio and television, he is the author of Norman Corwin and Radio: The Golden Years, an acclaimed biography of the master of American radio drama.

Stacey K. Jones, a recent Hutton Honors College of IUB graduate who earned degrees in psychology and sociology, is one of 76 winners of the 2006 Jack Kent Cook Foundation Award, which provides full tuition and a stipend for graduate school.

Jones, originally from the Quad Cities area of Illinois and Iowa, is pursuing a master’s degree in social service administration at the University of Chicago. As an undergraduate, she was a student ambassador for Multicultural Outreach Recruitment Educators, was a member of the American Humanities Student Association, and helped organize fundraisers for Big Brothers Big Sisters of South-Central Indiana.

Sumit Ganguly, director of IUB’s India Studies Program, was awarded the Medal of the Italian Chamber of Deputies. The award recognized his “remarkable work and contribution to promoting greater understanding of South Asian culture and history, and in particular its recent economic and political development.”

Ganguly is a professor of political science and holds the Rabi Bhushan Chair of Political Science at IU. He has been on the faculty of the University of Chicago, the University of California at Santa Cruz, and the University of California at Los Angeles. He is the author of numerous books and articles on India and South Asia.

In the early 1990s, several states responded to a wave of anti-abortion violence by enacting laws to protect abortion clinics and their staff and patients. While supporters thought the laws would deter attacks, some people suggested they would provoke more harassment and vandalism.

Both sides were wrong, according to a new report. William Pride more, associate professor in the IUB Department of Criminal Justice, and co-author Joshua Freilich, of the John Jay College of Criminal Justice at City University of New York, wrote that the state laws had no effect on the frequency of clinic attacks.

“We tested these competing hypotheses and found no support for either one,” Pride more said. “In other words, states with laws pro tecting abortion clinics and reproductive rights are no more or less likely than other states to have higher or lower levels of victimiza tion against abortion clinics, staff, and patients.”

The report was accepted for publication in the journal Law and Human Behavior. Pride more said the laws can have value, even if they don’t deter violence. They can be seen as providing constitu tional support for the right to choose an abortion and justice for people who are attacked for engaging in legal activities, he said.

In the early 1990s, several states responded to a wave of anti-abortion violence by enacting laws to protect abortion clinics and their staff and patients. While supporters thought the laws would deter attacks, some people suggested they would provoke more harassment and vandalism.

Both sides were wrong, according to a new report. William Pride more, associate professor in the IUB Department of Criminal Justice, and co-author Joshua Freilich, of the John Jay College of Criminal Justice at City University of New York, wrote that the state laws had no effect on the frequency of clinic attacks.

“We tested these competing hypotheses and found no support for either one,” Pride more said. “In other words, states with laws pro tecting abortion clinics and reproductive rights are no more or less likely than other states to have higher or lower levels of victimiza tion against abortion clinics, staff, and patients.”

The report was accepted for publication in the journal Law and Human Behavior. Prime more said the laws can have value, even if they don’t deter violence. They can be seen as providing constitu tional support for the right to choose an abortion and justice for people who are attacked for engaging in legal activities, he said.
These are truly interesting and exciting times at Indiana University. We’re in the midst of some significant changes in the executive leadership of the Bloomington campus, with active searches now underway for a new president, new deans of the University Libraries, and the president/CEO of the IU Alumni Association. The College has a new dean, Bennett J. Bertenthal, a cognitive neuroscientist, who began his tenure Jan. 2, and who comes to IU from the University of Chicago. We are pleased to welcome Dean Bertenthal and look forward to his leadership of the College.

The construction of Simon Hall, our new multidisciplinary science building, is nearing completion, with occupancy scheduled for the early spring. It is truly a state-of-the-science building that will provide our talented faculty in chemistry, biology, and biochemistry with some much-needed space to conduct collaborative research, discovery, and development. We are indeed grateful for the support provided by numerous donors and in particular for the generous philanthropy of the Simon family, whose naming gift is funding a significant portion of the private support needed for the construction of this building. The trustees recently approved plans for the construction of a second multidisciplinary science building on campus — Life Sciences Building II — that will be located north of 10th Street and west of Fee Lane near the Psychology Building. This building project will soon be let for bids by the University Architect’s Office.

As you may know, IU is heavily committed to the Indiana Life Sciences Initiative and is seeking $80 million in operating funding for 2007-09 from the Indiana General Assembly. IU plans to match the state funds with more than $46 million. The university also is seeking bonding authority for more construction and renovation of research facilities. It is hoped the initiative, which will continue through 2019, will attract at least 100 new companies, create up to 14,000 new jobs, and bring $2.4 billion in research funding to the state.

The basic research conducted by our science faculty in the College will play a significant role in this collaborative and important initiative for Indiana.

Yours for IU and the College,

— DAVID ELLIES

Comparative Literature

One of the oldest in the United States, the Department of Comparative Literature at Indiana University is also one of the most comprehensive and integrated. It was founded in 1949, when the discipline was at the forefront of bridging the gap between literary studies in the United States with the linguistic and historical diversity of European and Asian literary traditions. With the cooperation of colleagues in other departments and programs, the department now stands at the crossroads of the humanities, providing students with a rich and illuminating range of approaches to literary study — approaches that cut across national, cultural, and disciplinary boundaries and that place literary works in the context of other expressive traditions, including other art forms such as music, film, video, painting, and architecture. In addition, the department has increasingly concerned with critical theory and with interrelationships between literature and such fields as philosophy, religion, politics, and science. While maintaining and continually enhancing traditional strengths in European literature and thought, in comparative arts, in translation studies, and in East Asian and African expressive traditions, we have been developing strengths in such areas as diasporic studies, Persian and Mughal studies, modern and Biblical Hebrew studies, and inter-American studies.

Our undergraduate students have a wide range of opportunities for excellent training and supervision. We encourage participation in the honors program, which affords qualified majors an opportunity to engage in advanced, independent work and to focus on topics of special interest. Recently, through study-abroad programs, comparative literature majors have studied in England, Italy, Hungary, and several other countries, either directly through IU or through other schools and colleges. Our departmental awards and prizes also reflect this diversity: The Undergraduate Award recognizes a graduating comparative literature major who is outstanding in academic achievement and scholarly potential and who has dedicated service to the department. Other awards are the Mary F. Campbell Award, which is given every four years to an exceptional student in the humanities, and the Ann Geduld Award, honoring the department’s most outstanding undergraduate in film or comparative arts.

The graduate program in comparative literature attracts students from Europe, Asia, Africa, and the Middle East, as well as the United States. The course of study for each student is highly individualized, depending upon the languages and national literatures, the historical period, and the critical issues the student chooses to study. The department includes courses that concentrate on theoretical and interdisciplinary studies, periods, genres, comparative and inter-arts studies, cross-cultural studies, and translation studies. Both in courses and in thesis work, the department stresses theoretical perspectives. The department offers a certificate in translation and also participates in certificates in Biblical and literary studies, medieval studies, and Renaissance studies.

Graduate students have the opportunity to teach an unusually wide array of courses on world literature and English composition, popular culture, and comparative arts. The goal of the program is to produce professionals who are experienced teachers as well as highly competent critics and scholars. Graduate students of our doctoral program are currently teaching at a wide range of academic institutions, including graduate research universities, state colleges, and private liberal arts colleges.

Correction: In the summer 2006 issue, we reported that the Department of Communication and Culture has 15 graduate students in residence. That number should have been 65. We regret the error.